# Reliability Run-5: Cu HE vs. LE

#### **Fulvia Pilat**





### outline

- System reliability
- Comparison performance data HE and LE
- HE LE parameter differences
- On performance and reliability optimization
- → discussion

Machine reliability topic of a full session during Retreat 2002 (Mike Brennan)



# System reliability

#### basis of system reliability:

over-design and/or 'conservative' use

- Not the way high-energy accelerators typically get designed (cost cutting) or used (pushing performance)
- Unlike synchrotron light sources or other applied physics machines

### **Machine reproducibility**

"trivial": do the same, machine reproduces

"non-trivial": change parameter X and Y reproduces

(still "trivial reproducibility" issues in the run upon ramp reversal, likely caused by slow orbit shifts)



# Integrated luminosity HE





# Integrated lumi LE

#### RHIC Run 5 (62 GeV) Delivered Cu-Cu Luminosity



Days into the run (to 03/22/05)



### hours at store - HE





### Hours at store - LE





## Rates, intensities – week 5





Reliability Run-5: Cu HE vs. LE

NATIONAL LABORATORY

Retreat 2005

# LE week 2 - stores



## HE vs. LE parameters

#### **Observables**

- Reproducibility
- luminosity lifetime
- time between stores

### Variables: machine parameters

(almost the same #bunches 37-41, transmission HE~95%, LE ~ 85-92 %, same transition set-up)

bunch intensity: HE 41x 4.5e9 LE: 37x3.8e9

beta\* HE: 0.85m LE: 3m

energy HE: 100 GeV/u LE: 31.2 GeV/u



## HE – LE luminosity lifetime





## HE vs. LE ramp: emittance





### HE: time between stores

RHIC Run 5 (100x100 Cu) Time Between Physics Stores





### LE: store-to-store time





# Reliability factors

### **Bunch intensity**

- Losses on ramp, permit pulls
- Beam decay at store, tuning, collimation
- Beam-beam, luminosity lifetime
- single bunch instabilities
- BLAM

#### Beta squeeze

- Losses on beta squeeze, permit pulls
- Aperture, losses at triplets

### **Energy**

Shorter ramps, shorter time between stores



# Integrated lumi "strategies"

Push bunch intensity, beta\*, find limit, adjust # bunches

PRO's: machine upgrade, learn to cope with limits in operations

CON's: low(er) uptime, no truly 'routine operations'

Conservative parameters

PRO's: high(er) uptime, routine operations

**CON's**: machine upgrade needs dedicated development

time

→ Discussion at Retreat

